Day 06

Forward Kinematics

Transform Equations

Transform Equations

 give expressions for:$$
\begin{aligned}
& T_{2}^{0} \\
& T_{4}^{3}
\end{aligned}
$$

Transform Equations

Transform Equations

how can you find

$$
\begin{aligned}
& T_{1}^{0} \\
& T_{2}^{0} \\
& T_{3}^{2} \\
& T_{3}^{1}
\end{aligned}
$$

Links and Joints

- n joints, $n+1$ links

$$
q_{i}=\left\{\begin{array}{cc}
\theta_{i} & \text { revolute } \\
d_{i} & \text { prismatic }
\end{array}\right.
$$

- link 0 is fixed (the base)
- joint i connects link $i-1$ to link i
- link i moves when joint i is actuated

Forward Kinematics

given the joint variables and dimensions of the links what is the position and orientation of the end effector?

Forward Kinematics

- because the base frame and frame 1 have the same orientation, we can sum the coordinates to find the position of the end effector in the base frame $\quad\left(a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right)\right.$,

$$
\left.a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right)
$$

Forward Kinematics

from Day 02

$$
\begin{aligned}
& p^{0}=\left(a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right),\right. \\
&\left.a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& x_{2}=\left(\cos \left(\theta_{1}+\theta_{2}\right),\right. \\
&\left.\sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& y_{2}=\left(-\sin \left(\theta_{1}+\theta_{2}\right),\right. \\
&\left.\cos \left(\theta_{1}+\theta_{2}\right)\right)
\end{aligned}
$$

Frames

Forward Kinematics

using transformation matrices

$$
\begin{gathered}
T_{1}^{0}=R_{z, \theta_{1}} D_{x, a_{1}} \\
T_{2}^{1}=R_{z, \theta_{2}} D_{x, a_{2}} \\
T_{2}^{0}=T_{1}^{0} T_{2}^{1}
\end{gathered}
$$

